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TECHNICAL MEMORANDUM TM X-64566

INVESTIGATION OF FATIGUE PROBLEM
IN 1-MIL DIAMETER THERMOCOMP RESSION AND
ULTRASONIC BONDING OF ALUMINUM WIRE

By

Felminio Villella and Michael F. Nowakowski

SUMMARY

The failure mode discussed in this memorandum is presented
with the objective of enabling the engineer and designer to become as
familiar as possible with fatigue failure that involves bond reliability
as related to temperature. It is estimated by some authorities that
90 percent of all fatigue failures are not caused by faults in the material
itself, but by faulty detail design, improper handling equipment, or
lack of adequate inspection.

Exhaustive tests are required to determine the fatigue strength
of 1-mil aluminum (Al) wire thermocompression (T.C.) wedge or
ultrasonically bonded to a silicon chip; however, it is known that abrupt
changes in cross-section, due to the bonding operation, cause a
significant reduction in fatigue strength. Such a change in cross-
sectional area is found at the heel of the bond, and metal fatigue caused
by thermal deformation usually breaks the wire at this, the weakest
point.



SECTION I. INTRODUCTION

The purpose of this memorandum is to illustrate the failure mode
caused by thermal deformation and how it affects bond integrity. Wedge
and ultrasonic bonding in small-signal 1-mil diameter Al wire transistors
is the subject of this work. Repeated switching of the transistor between
high and low power, at a rate that allows thermal expansion and contrac-
tion in the interconnecting wire, causes the wire to flex at the point of
reduced cross section until finally the wire breaks due to metal fatigue.

It was noted that the thermal deformation was related to many factors
such as transistor power dissipation, current density in the wire, wire
dress and length, thermal time constant, and frequency of operation.

To verify the existence of these factors, thermal analyses at
various working conditions were conducted in actual transistors, and
analyses with the Scanning Electronic Microscope (SEM) were performed.
The effects of wire dress were investigated using a wire connected
between two posts, subjected to various combinations of current density
and cycling time. Based upon the results of these tests, it was possible
to establish to what extent thermal fatigue influences the reliability of
transistors using 1-mil Al wire T.C. wedge or ultrasonic bonded. The
failure mode was identified as cracking and separation of the bond wire
at the heel of the bond.

Subsequent to the identification of the failure mode, it was
determined that the mode could be eliminated by changing the type and/or
size of the interconnecting lead wire and changing the method of bonding
to eliminate the necked-down condition.

In April 1969, a screened 2N2222A transistor with date code
6807, failed in the Electronic Control Assembly (ECA), Ignition
Phase Timer during testing, prior to hot firing of a J-2 engine at the
Rocketdyne engine test stand. The timer was removed from the ECA
and analysis showed that the 2N2222A transistor was open between base
and emitter. The failed transistor was decapped by the manufacturer,
and visual inspection revealed that the base interconnecting lead wire had
fractured at the heel of the T.C. wedge bond to the semiconductor chip.
(See figure 1.) ‘

To investigate further, MSFC conducted a study of the problem,
its causes, extent, and the possible screening tests and inspections.
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2N2222A Transistor From The J-2 Engine Phase Timer

Figure 1.



SECTION II. INVESTIGATION CRITERIA

A, FAILURE MODE

Since the failure was mechanical in nature, namely cracking
and separation of bond wire at the heel of the bond, it was believed
that accelerated stress testing such as power cycling was the best
approach to evaluate bond integrity, and to duplicate the failure mode
and mechanism of the failed transistor.

MSFC conducted power cycling tests at maximum rated power
of the device with a collector current of 50 mA and repetition rates
below 1 Hz on a sample of seven transistors T.C wedge bonded. Four
transistors failed catastrophically. The devices used for this test were
decapped and analyzed with a SEM. The SEM analysis of bonds that had
not failed revealed that the Al interconnecting leads were greatly reduced
in cross-sectional area at the heels of the bonds. KExamination of the
failed bonds showed that the separation occurred at the reduced cross
section. (See figures 2 through 7.) The rough appearance of the wire
in the areas of separation indicated a fatigue fracture mechanism as
described in Motorola report, "Frequency-Power Dependence of
Mechanical Failures in Transistor Bonding Wires. "

B. THERMOMECHANICAL EFFECT

It is known that abrupt changes in cross section of the wire,
due to the bonding operation, cause a significant reduction in fatigue
strength. This is further discussed in MSFC memorandum S&E-ASTN-
ASR-69-60, which states the following: ''Analysis indicates that the
high temperature thermocompression wedge bond creates local plastic
hinges at the heel of the bond which plastically deform under very small
loads. Because of electrical clearance requirements, a sharp local
vertical rise is also formed at the heel during the bond. This rise
causes misalignment of the center lines in a region of varying cross
sections. The stress concentration effects, residual stresses, and
material property degradation negate the development of an endurance
limit (threshold stress below which an infinite life cycle may be achieved).
The high ductility of the region allows large deformations without fracture.
However, reversal of the strain on each cycle results in creep and

reduction of the cross section area on each thermal excursion until
cracks form and failure results. "
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Figure 2. Manufacturer "A' 2N2222A, From Ignition
Phase Timer, Typical T. C. Wedge Bond

Figure 3. Manufacturer '""B"
2N2222A, Typical
Ultrasonic Bond
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Figure 7. Manufacturer "A' 2N2222A, T.C. Wedge Bond,
Emitter Bond, Microcracks at Heel After 4700
Power Cycles. Device Electrically Still Good.



To establish the extent to which thermal deformation caused by
the temperature differential (AT) in the systems produces motion of the
Al interconnecting wire, power cycling tests were conducted at various
combinations of power levels, current, and cycling time. Such tests
were performed in 1966, by A. C. Electronics. A summary of the
test results is shown in table 1. Since this data was made available
to us, the tests were not repeated.

Figure 8 shows that lead movement was caused by the combina-
tion of Joulian heating in the leads (IZR) and power dissipation in the
chip. In fact, emitter lead movement was visually detected under 80X
magnification at 204 mW of power dissipation and a collector current
of 365 mA. At 400 mW, only a collector current of 90 mA was required
to cause the same movement. The transistor under test was manufactured
by Manufacturer "A", part number 1006323 having 1-mil Al interconnec-
ting lead wires.

A. C. Electronics found that the current required to fuse 1-mil
Al lead wire ranges from 1.2 to 1.9 amperes depending on the lead
length, the shorter the lead, the greater the current capability. A 60-
mil-long lead, which is typical for this transistor, fused at a current
of 1.4 amperes.

C. POWER CYCLING TEST

Since the power cycling tests performed by MSFC confirmed the
studies made by A. C. Electronics, Motorola's Applied Science Depart-
ment, Massachusetts Institute of Technology and Raytheon Company's
Space and Information Systems Division, no further investigation was
performed. Instead, the effort at MSFC was directed towards the
establishment of operation limits for the present devices. MSFC also
performed a SEM study of bond degradation.

To establish operation limits, parallel tests were conducted by
MSFC and Manufacturer "A''. At the request of MSFC, Manufacturer
"A' began power cycling tests at various operating conditions on devices
using 0.001-inch diameter Al interconnecting lead wire and T. C. wedge
bonds, while MSFC began power cycling tests on devices using 0.001-
inch diameter Al wire ultrasonically bonded, and devices using 0.0007-
to 0.001-nch diameter gold (Au) T.C. bonds. Table 2 summarizes the
results of the tests performed by Manufacturer "A'. The tests performed
by MSFC are summarized in table 3.

10



Table 1.

Power Cycling Test Results

Duty Pulse

Condition Pp Ic Frequency Cycle Width
I 420 mW | 520 mA 1 Hz 50% 1/2 Sec.
II 720 mW 20 mA 1 Hz 50, % 1/2 Sec.
1,280 mW 80 mA 1 Hz 50% 1/2 Sec.
1,170 mW 90 mA 1 Hz 50% 1/2 Sec.
310 mW 125 mA 1 Hz, 50% 1/2 Sec.
111 7 mW 10 mA 1 Hz 50% 1/2 Sec.
v 420 mW 550 mA 10 Hz 2%% 2 m Sec.
420 mW | 550 mA 10 Hz 5% 5 m Sec.
420 mW 550 mA 10 Hz 10% 10 m Sec.

v 420 mW | 550 mA 60 Hz 50% 8.3 m Sec.

*No movement was detected.

NOTE: Power cycling conditions under which emitter lead measurement
is detectable under 80X magnification.

11
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I. MSFC TEST PROGRAM

The following groups of devices were power cycled at
conditions specified below and using the circuit configuration shown
below. A summary of power cycling tests is given in table 3.

a. Ultrasonic Bonding Systems of Al wire to
Metallization

(1) Group 1

Sample Size = 69 2N2222A transistors
Pt = 500 mW (Maximum Rated Power)
Ta = 25° +3°C

Ic = 50 mA and Vg = 10V

Power on = 3 minutes

Power off = 3 minutes

Total number of cycles = 83,070

(2) Group 2

Sample Size = 25 2N2222A transistors
Pt = 100 mW

TA 25° +3°C

Ic = 50mA and Vg = 2V

Power on = 1 minute

Power off = 1 minute

Total number of cycles = 111,750

15



(3)

(4)

Group 3

Sample Size = 25 2N2222A transistors
Pr = 25 mW

Tp = 259 +3°C

Ic = 10 mA and Vogrp = 2.5V

Power on = |l minute

Power off = 1 minute

Total Number of cycles = 113,460

Group 4

Sample Size = 25 2N2222A transistors
Pt = 20 mW

Ta = 85°% +3°C (oven)

IC = 10 mA and VCE = 2V

Power on = 1 minute

Power off = 1 minute

Total number of cycles = 113,460

NOTE: In group 4 the devices are in a steady-
state environmental condition of 85° + 3°C
during both the on and off period of power
cycling.

. Bonded Systems of Au wire to Al Metallization

(1)

(2)

Group 5

Sample Size = 19 2N2222A transistors
Pr 500 mW {Maximum Rated Power)
Ta = 25° +3°C

IC = 50 mA and VCE = 10V

Power on = 3 minutes

Power off = 3 minutes

Total number of cycles = 44,590

i

H

Group 6

Sample Size = 13 2N2222A transistors
Pr = 500 mW (Maximum Rated Power)
Ta = 25° +3°C

16



Ic = 50mA and Vgr = 10V
Power on = 3 minutes

Power off = 3 minutes

Total number of cycles = 78,750

(3) Group 7

Sample Size =

49 S2N910 transistors

Pt = 500 mW (Maximum Rated Power)

Tp = 25°+3°C

I = 50 mA and Ver = 10 VvV
Power on = 3 minutes

Power off = 3 minutes

Total number of cycles = 63,040

(4) Group 8

Sample Size =

98 S2N718 transistors

Pt = 500 mW (Maximum Rated Power)

TA = 25° + 3°C

IC = 50 mA and Vgp = 10V
Power on = 3 minutes

Power off = 3 minutes
Total Number of Cycles = 67,200

2. THE METHOD OF LEAST SQUARES

A plot of cumulative percent of failures versus device
cycles operated for devices operated under the same power current

and repetition rates is shown in figure 9.

The data for the Manufacturer

"A'" 2N2222A (Al) T.C. bond were not well correlated. The least squares
method was used to determine the slope of the correlated data.

Table 4 shows how the least squares line was fitted to

the data.

In order to have the line yl

atbx satisfy the criterion

of least squares, the constants (a) and (b) must be such that

n
Z (yi - yil)z is as small as possible.

i =1

17
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The constants (a) and (b) can be obtained by solving the following two
simultaneous equations, called the normal equations:

2yi = a-ntb-Txi
Txiyi = a- Txith- Txil

where:
b n (Fxiyi) - (Pxi) (Tyi) _ 7(714,360) - 45,280 (87.3)
n(Txi2) - (Txi)e 7 (36,797 x 10%) - (2050 x 10°)
= 19.9 x 10-4
a = Tvyi-b(Txi) = (87.3) - (19.9 x 10°%) (45,280) = -0.4
n 7
therefore:
-4
yl = -0.4 +(19.9 x 10 ")x
X vl
0 - 0.4
2,000 3.58
4,000 7.56
6,000 11.54
10, 000 19.5

Although the Manufacturer '"B' ultrasonic bonds did not fail as
early as the Manufacturer "A'" T.C. bonds, the rate of failure of the
Manufacturer "B' ultrasonic bonds after the initial failure is about the
same as that experienced by the Manufacturer "A'" T.C. bonds. This
is illustrated by the fact that the two plots are nearly parallel.

3. SEM

Three devices from group 1 (serial numbers 74, 75, and 76)
were decapped and analyzed by the SEM, before and during power cycling
as well as after failure.

Failure of device serial number 74, which is illustrated in

figures 10 through 12, was attributed to an open base post bond after 16,200
power cycles. The failure mode is shown in figure 12.
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Figure 12. Manufacturer "B' 2N2222A, Serial Number
74, Base Post Bond, Ultrasonie. Open at The
Heel After 16,200 Power Cycles.

Failure of the device, serial number 75, was attributed to
open emitter and base bonds at the heel, as shown in figures 19 and 20.
It is also interesting to note the deterioration (granular appearance) in
the Al metallization as function of the power cycling. (See figures 13
through 15.)
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Device, serial number 76, exhibited the same failure mode
and mechanism as device serial number 75. Cracks in the heel of the
bonds were found also, before the power cycling test. Figures 16 through

18 depict clearly the increasing depth of the microcracks as a function
of the power cycling.

Figure 16. Manufacturer '"B' 2N2222A, Serial Number
76, Emitter Die Side Bond, Ultrasonic.
Evidence of Microcracks at the Heel Before
Power Cycling
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The post wire bonds in all three devices were good with the
exception of the base post bond of device serial number 74.

Also, at the end of the power cycling test, a random sample
was taken from each group of the devices that survived the test. The
sample was analyzed by the SEM and it was found that electrically-good
ultrasonically bonded devices had deep microcracks at the heel of the
bonds, such that the electric continuity was about to be broken. It is
interesting to note that degradation of bond integrity is a function of the
power and current level, as well as repetition rates. When examined
under the SEM, devices from groups 1, 2, and 3 appear as shown in
figures 19 through 21. It can be noted that the devices in groups 2 and -

3 which were power cycled under less strenuous conditions (power current
and repetition rates), when compared to group 1, did not exhibit bond
degradation at the heel after 133,430 cycles. The microcracks or tool
marks shown in figures 19 through 2] have the same appearance and depth
as shown in previous photographs for devices scanned with the SEM before
the power cycling test.

4. BOND PULLING TEST

At the end of the power cycling test, a bond-pull test was
performed to investigate the strength of the 1-mil diameter Al and 1-mil
diameter Au interconnecting lead wires. The pull test was performed on
all bonds in the devices that underwent SEM analysis, plus all remaining
devices of group 3. The pull test was performed using a Micro Bond
Tester. A thin molybdenum wire hook was carefully positioned under the
loop of the interconnecting lead wire about midway between the die bond
and the post bond of the transistor mounted on a fixed stage. The hook
was attached to a retained reading dynamometer which was motor-driven
at a constant angular velocity to apply a uniform loading rate. The loading
rate used to pull the 1-mil wire was 0.2 grams per second.

The failure loads for 1-mil Al lead wire in the TO-18
packages were found to be in the range of 3.0 to 4.0 grams for leads that
are ultrasonically bonded to a system consisting of Al metallization on
the die and Au-plated Kovar package posts. The failure loads for l1-mil
Au lead wire in the TO-18 packages were found to be in the range of 4.5
to 5.5 grams for leads that are T.C. bonded in the same metallization

system as above. The results of the bond pulling test are presented in
table 5.
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SECTION III. CONCLUSIONS

If significant microcracks or tool marks are present at the heel
of T.C. wedge bonds on l-mil Al wire, the bonds will fail when subjected
to the stresses of low frequency power cycling. Failure may occur as early
as 1600 cycles performed under the conditions described in figure 9, if
the tool marks have caused a significant reduction in cross section of
the wire. Devices subjected to the same power cycling conditions,
but using 0. 001 inch diameter Al wire ultrasonically bonded, may start
to exhibit failures due to metal fatigue at approximately 8, 000 cycles,
if the above stated microcrack and tool mark conditions exist and they
continue to fail with an approximately constant failure rate. After 45,000
cycles, the bonds in the surviving devices are so weak that they can be
pulled apart with forces of 0 to 2.0 grams. Devices using 1-mil T.C.
bonded Au interconnecting wire withstood the same power cycling conditions
much better than either T.C. or ultrasonically bonded Al wire. Out of a
total of 179 Au wire devices tested (groups 5, 6, 7, and 8) there were two
failures, one at 19,880 cycles and another at 42,060 cycles. There was
virtually no degradation in the Au wire bond strength as a result of
power cycling. This is demonstrated by the bond-pull tests where all
bonds withstood forces of 4.5 grams or greater except for one post bond
that broke at 1.5 grams.

It is concluded that in order for devices using l-mil Al wire to
be used safely in power cycle type applications, very close control of the
bonding process must be maintained to assure that tool marks, micro-
cracks, or insufficient cross-sectional areas are not present on the
heels of the bonds. The methods or degree of control necessary to prevent
the above have not been determined, but a study is being initiated in an
attempt to identify them. Also, by comparing groups 1, 2, and 3 of
table 3, it is shown that devices in groups 2 and 3 which were power
cycled at 100 mW or less exhibited a significantly lower failure rate
as compared to group 1. It may be concluded that applications requiring
less than 100 mW total dissipation at currents below 50 mA do not
significantly degrade device reliability.

It is also concluded that the devices using 1-mil Au interconnecting
wire are not significantly degraded when subjected to extensive power
cycling.
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